Simulation of Stochastic Gravitational Wave by merging PBHs: LALSuite Package

Ali Salehi

 An Introduction to Ligo Scientific Collaboration Algorithm Library Suite

Simulating a Custom SGWB
Using LALSuite

24 Aban 1402

Outline

• Introduction

• Reading Documentations

• My Results

LSC Soft

"The LIGO Scientific Collaboration (LSC) is a group of scientists focused on the direct detection of gravitational waves, using them to explore the fundamental physics of gravity, and developing the emerging field of gravitational wave science as a tool of astronomical discovery."

The software section of LSC is consisted of many open source projects such as:

- LALSuite
- Bilby

• GWCelery

LALSuite

• The LSC Algorithm Library Suite (LALSuite) is comprised of various gravitational wave data analysis routines written in C

• It consists of 9 libraries, thousands of constants, variables, functions and classes and tens of executable applications

• Wrapers for Phyton and Octave are provided too

LALSuite Code and Documentation

All LSC public projects including LALSuite are accessible from:

https://git.ligo.org/

LALSuite has an extensive documentation which is updated daily:

https://lscsoft.docs.ligo.org/lalsuite/

Let's take a look!

Results

Input

Output

Parameters:	Sample rate = 4096	t start = 0	Duration = 1000 s
time (s)	H1:STRAIN (strain)	L1:STRAIN (strain)	V1:STRAIN (strain)
0	1.926492821e-30	-1.788444922e-31	5.739186702e-30
0.000244141	1.918054518e-30	-1.579567591e-31	5.748827977e-30
0.000488281	1.911866216e-30	-1.341251071e-31	5.763178836e-30
0.000732422	1.908398694e-30	-1.103798371e-31	5.780976346e-30
0.000976562	1.907868300e-30	-8.963895989e-32	5.800802313e-30
0.001220703	1.910125023e-30	-7.420453039e-32	5.821477487e-30
0.001464844	1.914606396e-30	-6.539958382e-32	5.842313240e-30
0.001708984	1.920400789e-30	-6.340547819e-32	5.863129818e-30

Power Spectral Density

Conclusions (or how to use any open source project)

- 1. Define what you need
- 2. Look for methods in the documentation
- 3. Ask informed questions
- 4. Write what need
- 5. If you think it can be useful share it!

VIIIIIIIIIIIIIII

UHA DULLING

E @gmail.com e

.ac.ir/people/ali-salehi CC9

in munition

P

filler!

1. Martin Bar

1111111

AUL