Cosmic inferences from the morphology of the Universe

Intensive Report

Mohammad Hosein Jalali Kanafi

Computational Cosmology Group Department of Physics Shahid Beheshti University

24 Aban 2023

What is meant by morphology?

 $PDF(\delta_1) = PDF(\delta_2) = PDF(\delta_3) = PDF(\delta_4)$

Imprint of massive neutrinos on Persistent Homology of large-scale structure

Probing the anisotropy and non-Gaussianity in redshift space through the derivative of excursion set moments

Morphology of CMB fields: effect of weak gravitational lensing

Morphology of LSS in the presence of primordial non-Gaussianity: Scale dependent bias of critical Points

Testing Cosmological Principles

Morphology of LSS: Constraining the Modified Gravity

Simulation Based Inference

Imprint of massive neutrinos on Persistent Homology of large-scale structure

Cosmology is mainly sensitive to the sum of the three neutrino masses (M_{ν})

Upper limit from (CMB + BAO + CMB Lensing): $M_{\nu} \leq 0.115 \text{ eV}$

$$\beta_{k}(\vartheta) = \sum_{i=1}^{n_{k}} \Theta\left(\vartheta^{(k)}_{(i),birth} - \vartheta\right) \Theta\left(\vartheta - \vartheta^{(k)}_{(i),death}\right) = \sum_{i=1}^{n_{k}} \Theta\left(\vartheta - \vartheta^{(k)}_{(i),birth}\right) = \sum_{i=1}^{n_{k}} \Theta\left(\vartheta - \vartheta^{(k)}_{(i),birth}\right) = \sum_{i=1}^{n_{k}} \Theta\left(\vartheta - \vartheta^{(k)}_{(i),birth}\right) = \frac{n_{k}}{\Theta} \Theta\left(\vartheta - \vartheta^{(k)}_{(i),birth}\right) = \frac{n_{k}}{\Theta$$

Fisher Forecast

Statistics (field)	$M_{\nu}(\mathrm{eV})$	σ_8	Ω_m	Ω_b	h	n_s
β (cb)	0.2504	0.0153	0.0442	0.0156	0.1546	0.0699
β (m)	0.0172	0.0018	0.0427	0.0152	0.1617	0.0747
P(cb)	0.2511	0.0162	0.0559	0.0163	0.1640	0.1128
P(m)	0.0269	0.005	0.0564	0.0163	0.1650	0.1224
B~(cb)	0.2779	0.0168	0.062	0.0163	0.0138	0.1694
B(m)	0.0610	0.0041	0.0615	0.0139	0.1709	0.1473
$\beta + P + B \ (cb)$	0.1242	0.0077	0.027	0.0075	0.0878	0.0423
$\beta + P + B \ (m)$	0.0152	0.0015	0.0267	0.0075	0.0886	0.0436

CDM + baryons + neutrinos (m)

Probing the anisotropy and non-Gaussianity in redshift space through the derivative of excursion set moments

see arXiv:2308.03086

M.H. Jalali Kanafi CCG SBU Intensive Report 2023/06

Redshift Space distortion

Minkowski Valuations

$$\mathcal{Q}_{artheta} = \{ \pmb{r} \in \mathcal{M} \mid \delta(\pmb{r}) \geq artheta \}$$

General Form

$$\Xi \equiv \int_{Q_{\vartheta}} dV_d \ \mathcal{G}(s_{\nu}; \vec{r}, \delta, \boldsymbol{\nabla} \delta, ...)$$

$$\begin{split} N_{cmd}^{(r,s)}(\vartheta,i;n) &\equiv \frac{1}{V} \int_{V} dV \, \delta_{D} \left(\delta^{(r,s)} - \vartheta \sigma_{0}^{(r,s)} \right) \, \left(\delta^{(r,s)}_{,i} \right)^{n} \\ &= \frac{1}{V} \int_{\partial Q_{v}} dA \, \frac{\left(\delta^{(r,s)}_{,i} \right)^{n}}{\left| \boldsymbol{\nabla} \delta^{(r,s)} \right|} \\ \end{split}$$
Conditional Moments of the First Derivative (cmd)

Morphology of CMB fields: effect of weak gravitational lensing

$$N_{\text{obs}}(\boldsymbol{n}, > S) = N_{\text{rest}}(\boldsymbol{n}, > S) \left[1 + A \, \boldsymbol{n} \cdot \hat{\boldsymbol{\beta}} \right]$$
$$A = \left[2 + x(1 + \alpha) \right] \boldsymbol{\beta}$$
$$\min \sum_{p} \frac{\left[N_{p}(\boldsymbol{n}, > S) - \bar{N}(>S) \, \left(1 + A \cos \theta_{p} \right) \right]^{2}}{\bar{N}(>S) \, \left(1 + A \cos \theta_{p} \right)}$$

Bengaly, Carlos AP, et al. MNRS (2019): 1350-1357

