

Morphological measures as indicators for critical transitions in complex systems

معیارهای ریختشناسی به عنوان نشانگرهای گذارهای بحرانی در سامانههای پیچیده

Supervisor:

Prof. S. M. S. Movahed

Complex systems, critical transitions

- Many real-world systems like ecosystems, climate, biological systems are complex and are characterized by
 the ability to self-organise and adapt under external influences or environments. However, due to their
 multi-component nature, nonlinear behavior and complex pattern of interactions, they also show multistability that creates the possibility of sudden, unexpected shifts from one dynamical state to another.
- These abrupt transitions are referred to as **critical transitions**. Many of these transitions occur with tiny changes in intrinsic or extrinsic conditions and are difficult to anticipate.
- often, such transitions cause natural calamities or failures in engineering systems and infrastructure.
 Therefore, predicting their occurrence is essential to mitigate disaster impacts and to manage the risks involved.

Common Pipeline

common pipeline for topological signal processing (TSP)

The standard pipeline for TSP constructs a filtration of simplicial complexes (called the Vietoris-Rips complex) based on point cloud data generated from the state-space reconstruction (SSR) of an input time series

Problem

problem with this pipeline is its computational demand having complexity $O(N^3)$, where $N = \binom{n}{d+1}$ is the size of the simplicial complex with n as the number of points in the simplical complex and d as the maximum dimension of the used homology. For long signals, this makes this standard pipeline computationally infeasible.

Solution

analyzing time series via representations as complex networks.

Coarse-Grained State-Space Networks

CGSS Network

Periodic TS

$$s_i = 1 + \sum_{j=0}^{n-1} \rho_i(j) b^j = 1 + 3(8^0) + 5(8^1) + 2(8^2) = 172$$

Alternative pipeline

Jerk circuit dynamic system

 Op-amp based Jerk circuit which is a real life continuous time system that exhibits period-doubling cascade followed by chaotic behavior. This non-linear dynamical system composed of threedimensional state Vector as follows:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\alpha \\ -\beta & \beta & -\beta \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1 \\ \alpha \\ 0 \end{pmatrix} \phi(y)$$

$$\varphi(y) = \begin{cases} -y & \text{if } y \le 1 \\ -1 & \text{if } y > 1 \end{cases}$$

AWGN (Additive white gaussian noise) with 30 dB SNR (Signal to noise rate)

 I added AWGN with 30 dB SNR to my generated time series for realistic simulations according to bellow formula:

$$SNR = \frac{\mu_{signal}}{\sigma_{noise}}$$

$$SNR_{dB} = 10log_{10}(SNR) = 30$$

$$\sigma_{noise} = \frac{\mu_{signal}}{10^{SNR_{dB}}/10} = \frac{\mu_{signal}}{10^3}$$

THANK YOU

Gantt Chart

			•	140	عال 3	س				سال 1402					سال	
دی	Ĩċſ	آبان	*	شهريور	مرداد	[:] گز	خرداد	ارديبهست	فروردين	اسفند	بهمن	دى	آذر	آبان	عنوان فعاليت	رديف
												_		_	مطالعهی نسبتاً جامع و تخصصی از مفاهیم گذار بحرانی، نقطهٔ عطف و آهستگی بحرانی	١
											_			_	تحلیل مبتنی بر ریختشناسی(هندسی و توپولوژی)	۲
										_				_	پیشپردازش مبتنی بر شبکههای پیچیده	٣
														_	مدلهای دینامیکی برای مطالعهٔ گذار بحرانی	٣
						_								_	جستجو برای یافتن ویژگی مناسب یافتن فاز و همچنین هشدار زودهنگام	۴
															اعمال روشهای ابداعی بر روی دادههای واقعی	۵
															ساخت بردار ویژگی و ارزیابی ماشینی	۶
															تحلیل و برّرسی نتایج به دست آمده و ارزیابی اثرات کمیتهای فیزیک بر روی توانایی شناسایی و هشدار زودهنگام از گذار بحرانی	٧
															ارائه گزارش نهایی و تهیه مقاله و نگارش پایاننامه	٨
															دفاع از پایاننامه	٩