Overview

Topological Machine Learning (TML) is a newly-emerging branch of data science at the interface of Topological Data Analysis (TDA) and Machine Learning (ML). The last decade saw an enormous boost in the field of Computational Topology. Methods and concepts from Algebraic Topology, formerly confined to the realm of pure mathematics, have demonstrated their usefulness in numerous areas e.g. biology, neuroscience, dynamical systems and material science, to name a few. In addition to the applications of TDA, it has also proven to be effective in supporting, enhancing, and augmenting both classical ML and Deep Learning (DL) models such as deep neural networks.

Methodology

In the TML project we construct efficient pipelines based on TDA and ML/DL methods. Our pipelines deal with various types of data sets (time series, point cloud, image/field, network/graph), therefore they contain other well-defined tools for converting data sets of different types to each other, such as Time Delay Embedding (TDE), Correlation Network (CN), Visibility Graph (VG), Recurrence Plot (RP), Recurrence Network (RN), k-Nearest Neighbor (kNN) methods and so on.

Publications

Journal Papers

Conference Papers and Posters

Hosein Masoomy

M.Sc. Complex Systems